Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators.

نویسندگان

  • Yang Wang
  • Mingxing Li
  • Z C Tu
  • A Calvo Hernández
  • J M M Roco
چکیده

The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reservoirs at temperature T(h) and T(c) (<T(h)) is optimized. It is found that the coefficient of performance at maximum figure of merit is bounded between 0 and (sqrt[9+8ε(c)] - 3)/2 for the low-dissipation refrigerators, where ε(c) = T(c)/(T(h) - T(c)) is the Carnot coefficient of performance for reversible refrigerators. These bounds can be reached for extremely asymmetric low-dissipation cases when the ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs approaches to zero or infinity, respectively. The observed coefficients of performance for real refrigerators are located in the region between the lower and upper bounds, which is in good agreement with our theoretical estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation.

We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between two heat reservoirs at constant temperatures T(h) and T(c), under two optimization criteria χ and Ω. In view of the fact that an "adiabatic" process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and the finite time required for the adiabatic processes are ta...

متن کامل

Analysis and design of a CMOS current reused cascaded distributed amplifier with optimum noise performance

In this paper, analysis, simulation and design of a distributed amplifier (DA) with 0.13µm CMOS technology in the frequency range of 3-40 GHz is presented. Gain cell is a current reused circuit which is optimum in gain, noise figure, bandwidth and also power dissipation. To improve the noise performance in the frequency range of interest, a T-matching low pass filter LC network which is utilize...

متن کامل

Optimal low symmetric dissipation Carnot engines and refrigerators.

A unified optimization criterion for Carnot engines and refrigerators is proposed. It consists of maximizing the product of the heat absorbed by the working system times the efficiency per unit time of the device, either the engine or the refrigerator. This criterion can be applied to both low symmetric dissipation Carnot engines and refrigerators. For engines the criterion coincides with the m...

متن کامل

Efficiency at maximum power of low-dissipation Carnot engines.

We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bou...

متن کامل

Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012